// Homegrown App Guard

Protect Custom AI Applications from Prompt Attacks, Leaks, and Compliance Violations

Guard your internally built AI copilots, chatbots, and RAG assistants with enterprise-grade security that works in real-time without breaking your application flow.

Request Demo
A red and blue icon with the letter n on it.
// CHALLENGE

Your Chatbots, Custom LLMs are 
Powerful. Are They Secure?

Enterprises building internal copilots, RAG assistants, and AI-powered chatbots 
face critical security risks that traditional tools can't address.

<svg width="24" height="24" viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg">
<path d="M11.25 12.75V7.50001C11.25 7.3011 11.329 7.11033 11.4697 6.96968C11.6103 6.82903 11.8011 6.75001 12 6.75001C12.1989 6.75001 12.3897 6.82903 12.5303 6.96968C12.671 7.11033 12.75 7.3011 12.75 7.50001V12.75C12.75 12.9489 12.671 13.1397 12.5303 13.2803C12.3897 13.421 12.1989 13.5 12 13.5C11.8011 13.5 11.6103 13.421 11.4697 13.2803C11.329 13.1397 11.25 12.9489 11.25 12.75ZM21.75 8.58282V15.4172C21.7506 15.6142 21.7121 15.8095 21.6366 15.9915C21.5611 16.1735 21.4502 16.3387 21.3103 16.4775L16.4775 21.3103C16.3387 21.4502 16.1735 21.5611 15.9915 21.6366C15.8095 21.7121 15.6142 21.7506 15.4172 21.75H8.58282C8.38577 21.7506 8.19055 21.7121 8.00852 21.6366C7.8265 21.5611 7.66129 21.4502 7.52251 21.3103L2.6897 16.4775C2.5498 16.3387 2.43889 16.1735 2.36341 15.9915C2.28792 15.8095 2.24938 15.6142 2.25001 15.4172V8.58282C2.24938 8.38577 2.28792 8.19055 2.36341 8.00852C2.43889 7.8265 2.5498 7.66129 2.6897 7.52251L7.52251 2.6897C7.66129 2.5498 7.8265 2.43889 8.00852 2.36341C8.19055 2.28792 8.38577 2.24938 8.58282 2.25001H15.4172C15.6142 2.24938 15.8095 2.28792 15.9915 2.36341C16.1735 2.43889 16.3387 2.5498 16.4775 2.6897L21.3103 7.52251C21.4502 7.66129 21.5611 7.8265 21.6366 8.00852C21.7121 8.19055 21.7506 8.38577 21.75 8.58282ZM20.25 8.58282L15.4172 3.75001H8.58282L3.75001 8.58282V15.4172L8.58282 20.25H15.4172L20.25 15.4172V8.58282ZM12 15C11.7775 15 11.56 15.066 11.375 15.1896C11.19 15.3132 11.0458 15.4889 10.9606 15.6945C10.8755 15.9001 10.8532 16.1263 10.8966 16.3445C10.94 16.5627 11.0472 16.7632 11.2045 16.9205C11.3618 17.0778 11.5623 17.185 11.7805 17.2284C11.9988 17.2718 12.225 17.2495 12.4305 17.1644C12.6361 17.0792 12.8118 16.935 12.9354 16.75C13.059 16.565 13.125 16.3475 13.125 16.125C13.125 15.8266 13.0065 15.5405 12.7955 15.3295C12.5845 15.1185 12.2984 15 12 15Z" fill="url(#paint0_linear_797_1353)"/>
<defs>
<linearGradient id="paint0_linear_797_1353" x1="-4.86888" y1="38.1837" x2="29.4958" y2="26.5581" gradientUnits="userSpaceOnUse">
<stop stop-color="white"/>
<stop offset="0.378899" stop-color="#0057E7"/>
<stop offset="0.486269" stop-color="#3095D9"/>
<stop offset="0.606414" stop-color="#EEC089"/>
<stop offset="0.720211" stop-color="#D74623"/>
<stop offset="1" stop-color="#9D0136"/>
</linearGradient>
</defs>
</svg>

AI-native attacks

Prompt injection and jailbreak attempts manipulate your application to override system instructions, extract hidden data, or bypass security controls.

<svg width="24" height="24" viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg">
<path d="M14.7832 2.40332C11.265 2.51622 8.40158 5.46648 8.40039 8.99023C8.39798 9.82834 8.55556 10.6597 8.86523 11.4385C8.86751 11.4442 8.86962 11.4504 8.87207 11.4561C8.87802 11.4698 8.88213 11.4842 8.88379 11.499L8.88184 11.5439C8.87615 11.5733 8.86181 11.6 8.84082 11.6211L3.32617 17.1357C3.21363 17.2483 3.15039 17.4014 3.15039 17.5605V20.25C3.15043 20.5813 3.41866 20.8496 3.75 20.8496H6C6.33135 20.8496 6.59957 20.5813 6.59961 20.25V18.75C6.59961 18.7101 6.6155 18.6716 6.64355 18.6436C6.67172 18.6154 6.71024 18.5996 6.75 18.5996H8.25C8.58135 18.5996 8.84957 18.3313 8.84961 18V16.5C8.84961 16.4601 8.8655 16.4216 8.89355 16.3936C8.92171 16.3654 8.96024 16.3496 9 16.3496H10.9395C11.0987 16.3496 11.2517 16.2865 11.3643 16.1738L12.3779 15.1592C12.3991 15.138 12.4265 15.1239 12.4561 15.1182C12.4858 15.1125 12.5165 15.116 12.5439 15.1279C12.5496 15.1304 12.5558 15.1325 12.5615 15.1348C13.3374 15.4433 14.165 15.5999 15 15.5986V15.5996H15.0107C18.5343 15.5955 21.4866 12.7363 21.5996 9.2168C21.6293 8.31376 21.4737 7.41353 21.1416 6.57324C20.8095 5.73304 20.3079 4.96975 19.6689 4.33105C19.0299 3.69243 18.2662 3.19202 17.4258 2.86035C16.6904 2.57015 15.9098 2.41448 15.1211 2.40039L14.7832 2.40332ZM16.875 6.59961C17.0143 6.59961 17.1477 6.65549 17.2461 6.75391C17.3445 6.85232 17.4004 6.98573 17.4004 7.125C17.4004 7.20295 17.3827 7.27966 17.3496 7.34961L17.3115 7.41699C17.2538 7.5032 17.1719 7.57066 17.0762 7.61035C16.9804 7.65005 16.8743 7.65991 16.7725 7.63965C16.6707 7.61936 16.5773 7.56946 16.5039 7.49609C16.4305 7.42271 16.3806 7.32928 16.3604 7.22754C16.3401 7.12558 16.35 7.01956 16.3896 6.92383C16.4293 6.82804 16.4968 6.74616 16.583 6.68848C16.6695 6.63073 16.7712 6.59961 16.875 6.59961ZM2.84961 17.5586C2.84923 17.4411 2.87293 17.3245 2.91797 17.2158C2.96302 17.1072 3.02898 17.0084 3.1123 16.9258L8.29102 11.7471C8.45059 11.5873 8.50658 11.3514 8.43652 11.1367C7.95539 9.66227 7.98585 8.06881 8.52148 6.61328C9.05716 5.15767 10.0674 3.92508 11.3896 3.11426C12.7119 2.30349 14.2683 1.96197 15.8086 2.14453C17.3488 2.32713 18.783 3.02269 19.8789 4.12012V4.12109C20.8434 5.08552 21.501 6.31376 21.7676 7.65137C22.0341 8.98907 21.8982 10.3763 21.377 11.6367C20.8558 12.8971 19.9723 13.9746 18.8389 14.7334C17.7054 15.4922 16.3727 15.8987 15.0088 15.9004H14.999C14.2734 15.9014 13.5522 15.7869 12.8623 15.5625C12.6476 15.4928 12.4115 15.5493 12.252 15.709L11.3564 16.6064C11.3428 16.6201 11.3266 16.6312 11.3086 16.6387H11.3076C11.2898 16.646 11.2706 16.6504 11.251 16.6504H9.75C9.41863 16.6504 9.15039 16.9186 9.15039 17.25V18.75C9.15037 18.7898 9.13452 18.8284 9.10645 18.8564C9.07836 18.8845 9.03978 18.9004 9 18.9004H7.5C7.16863 18.9004 6.90039 19.1686 6.90039 19.5V21C6.90037 21.0398 6.8845 21.0784 6.85645 21.1064C6.82828 21.1346 6.78972 21.1504 6.75 21.1504H3.75C3.51136 21.1504 3.28209 21.0555 3.11328 20.8867C2.94449 20.7179 2.84963 20.4886 2.84961 20.25V17.5586Z" stroke="url(#paint0_linear_797_1356)" stroke-width="1.2" stroke-linecap="round" stroke-linejoin="round"/>
<defs>
<linearGradient id="paint0_linear_797_1356" x1="-5.14278" y1="38.8189" x2="30.5453" y2="26.7477" gradientUnits="userSpaceOnUse">
<stop stop-color="white"/>
<stop offset="0.378899" stop-color="#0057E7"/>
<stop offset="0.486269" stop-color="#3095D9"/>
<stop offset="0.606414" stop-color="#EEC089"/>
<stop offset="0.720211" stop-color="#D74623"/>
<stop offset="1" stop-color="#9D0136"/>
</linearGradient>
</defs>
</svg>

Sensitive data exposure

Employee PII, customer records, financial data, and API keys leak through prompts and responses.

<svg width="24" height="24" viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg">
<path d="M5.25 8.25L8.25 15.75C8.25 17.4066 6.375 18 5.25 18C4.125 18 2.25 17.4066 2.25 15.75L5.25 8.25ZM18.75 5.25L15.75 12.75C15.75 14.4066 17.625 15 18.75 15C19.875 15 21.75 14.4066 21.75 12.75L18.75 5.25Z" fill="#363636"/>
<path d="M22.4466 12.4688L19.4466 4.96875C19.3805 4.80355 19.2579 4.66721 19.1005 4.58409C18.9432 4.50097 18.7615 4.47649 18.5878 4.515L12.75 5.8125V3.75C12.75 3.55109 12.671 3.36032 12.5304 3.21967C12.3897 3.07902 12.199 3 12 3C11.8011 3 11.6103 3.07902 11.4697 3.21967C11.329 3.36032 11.25 3.55109 11.25 3.75V6.14813L5.08689 7.51781C4.96806 7.54406 4.85741 7.59883 4.76447 7.67739C4.67154 7.75596 4.59912 7.85595 4.55345 7.96875V7.97437L1.55345 15.4688C1.51756 15.5582 1.49941 15.6536 1.50001 15.75C1.50001 17.9353 3.80064 18.75 5.25001 18.75C6.69939 18.75 9.00001 17.9353 9.00001 15.75C9.00061 15.6536 8.98246 15.5582 8.94658 15.4688L6.27376 8.79094L11.25 7.6875V19.5H9.75001C9.55108 19.5 9.36034 19.579 9.21969 19.7197C9.07904 19.8603 9.00001 20.0511 9.00001 20.25C9.00001 20.4489 9.07904 20.6397 9.21969 20.7803C9.36034 20.921 9.55108 21 9.75001 21H14.25C14.449 21 14.6397 20.921 14.7804 20.7803C14.921 20.6397 15 20.4489 15 20.25C15 20.0511 14.921 19.8603 14.7804 19.7197C14.6397 19.579 14.449 19.5 14.25 19.5H12.75V7.35187L17.5313 6.29062L15.0535 12.4688C15.0175 12.5582 14.9995 12.6536 15 12.75C15 14.9353 17.3006 15.75 18.75 15.75C20.1994 15.75 22.5 14.9353 22.5 12.75C22.5006 12.6536 22.4825 12.5582 22.4466 12.4688ZM5.25001 17.25C4.54408 17.25 3.11626 16.9116 3.00658 15.8775L5.25001 10.2694L7.49345 15.8775C7.38376 16.9116 5.95595 17.25 5.25001 17.25ZM18.75 14.25C18.0441 14.25 16.6163 13.9116 16.5066 12.8775L18.75 7.26937L20.9935 12.8775C20.8838 13.9116 19.456 14.25 18.75 14.25Z" fill="url(#paint0_linear_797_1361)"/>
<defs>
<linearGradient id="paint0_linear_797_1361" x1="-6.16649" y1="36.1695" x2="29.5183" y2="22.0853" gradientUnits="userSpaceOnUse">
<stop stop-color="white"/>
<stop offset="0.378899" stop-color="#0057E7"/>
<stop offset="0.486269" stop-color="#3095D9"/>
<stop offset="0.606414" stop-color="#EEC089"/>
<stop offset="0.720211" stop-color="#D74623"/>
<stop offset="1" stop-color="#9D0136"/>
</linearGradient>
</defs>
</svg>

Regulatory risk

Data leakage and AI-native attacks lead to compliance violations across multiple frameworks. GDPR fines reach €20M. HIPAA penalties hit $2M per violation.

<svg width="24" height="24" viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg">
<path d="M21 12C21 13.78 20.4722 15.5201 19.4832 17.0002C18.4943 18.4802 17.0887 19.6337 15.4442 20.3149C13.7996 20.9961 11.9901 21.1744 10.2442 20.827C8.49836 20.4798 6.89471 19.6226 5.63604 18.3639C4.37737 17.1053 3.5202 15.5017 3.17294 13.7558C2.82567 12.0099 3.0039 10.2004 3.68508 8.55585C4.36627 6.91132 5.51983 5.5057 6.99987 4.51677C8.47991 3.52784 10.22 3 12 3C14.387 3 16.6762 3.94822 18.3639 5.63603C20.0518 7.32386 21 9.61303 21 12Z" fill="#363636"/>
<path d="M11.999 2.84961C14.4252 2.85217 16.7513 3.81769 18.4668 5.5332C20.075 7.14147 21.0242 9.28602 21.1387 11.5469L21.1504 12.001C21.1502 13.8101 20.6134 15.5788 19.6084 17.083C18.603 18.5876 17.1737 19.7606 15.502 20.4531C13.8301 21.1457 11.9898 21.3277 10.2148 20.9746C8.4399 20.6215 6.80992 19.7494 5.53027 18.4697C4.25063 17.19 3.37844 15.5601 3.02539 13.7852C2.67233 12.0102 2.85434 10.1699 3.54688 8.49805C4.23944 6.82631 5.41243 5.39692 6.91699 4.3916C8.42133 3.38659 10.1899 2.8498 11.999 2.84961ZM5.63672 6.12402C5.51058 6.12964 5.39067 6.17524 5.29297 6.25195L5.20312 6.33887C3.87495 7.92612 3.14848 9.9304 3.15039 12C3.15136 13.681 3.63088 15.3277 4.5332 16.7461C5.43552 18.1643 6.72301 19.2966 8.24512 20.0098C9.7673 20.723 11.4616 20.9878 13.1289 20.7734C14.7961 20.5591 16.3679 19.8738 17.6602 18.7988C17.7897 18.691 17.8682 18.5336 17.876 18.3652C17.8837 18.1968 17.8195 18.0324 17.7002 17.9131L6.08789 6.2998C5.96884 6.18075 5.80492 6.11657 5.63672 6.12402ZM15.7549 3.99121C14.2327 3.27799 12.5384 3.01218 10.8711 3.22656C9.20387 3.44097 7.63207 4.12614 6.33984 5.20117C6.2103 5.30898 6.13181 5.46641 6.12402 5.63477C6.11631 5.80325 6.18055 5.96765 6.2998 6.08691L17.9121 17.7002C18.0312 17.8193 18.1951 17.8834 18.3633 17.876C18.5314 17.8685 18.6889 17.7902 18.7969 17.6611C20.1252 16.0737 20.8517 14.0688 20.8496 11.999C20.8485 10.3183 20.369 8.67206 19.4668 7.25391C18.5645 5.83581 17.2768 4.70436 15.7549 3.99121Z" stroke="url(#paint0_linear_797_1371)" stroke-width="1.2" stroke-linecap="round" stroke-linejoin="round"/>
<defs>
<linearGradient id="paint0_linear_797_1371" x1="-4.86887" y1="38.1837" x2="29.4958" y2="26.5582" gradientUnits="userSpaceOnUse">
<stop stop-color="white"/>
<stop offset="0.378899" stop-color="#0057E7"/>
<stop offset="0.486269" stop-color="#3095D9"/>
<stop offset="0.606414" stop-color="#EEC089"/>
<stop offset="0.720211" stop-color="#D74623"/>
<stop offset="1" stop-color="#9D0136"/>
</linearGradient>
</defs>
</svg>

Non-compliant outputs

LLM responses include toxic content, policy violations, or regulated information.

// HOW IT WORKS

Complete Observability & Security

GenAI App User
Your Custom
Homegrown AI APP
A red, blue, and green background with a white text that reads, '.

<svg width="20" height="20" viewBox="0 0 20 20" fill="none" xmlns="http://www.w3.org/2000/svg">
<path d="M7.59091 7.09091V2.72727M7.59091 7.09091H3.22727M7.59091 7.09091L2.5 2M7.59091 12.9091V17.2727M7.59091 12.9091H3.22727M7.59091 12.9091L2.5 18M13.4091 7.09091H17.7727M13.4091 7.09091V2.72727M13.4091 7.09091L18.5 2M13.4091 12.9091H17.7727M13.4091 12.9091V17.2727M13.4091 12.9091L18.5 18" stroke="url(#paint0_linear_913_9296)" stroke-linecap="round" stroke-linejoin="round"/>
<defs>
<linearGradient id="paint0_linear_913_9296" x1="-3.34113" y1="31.484" x2="24.8555" y2="21.9451" gradientUnits="userSpaceOnUse">
<stop stop-color="white"/>
<stop offset="0.378899" stop-color="#0057E7"/>
<stop offset="0.486269" stop-color="#3095D9"/>
<stop offset="0.606414" stop-color="#EEC089"/>
<stop offset="0.720211" stop-color="#D74623"/>
<stop offset="1" stop-color="#9D0136"/>
</linearGradient>
</defs>
</svg>

Input Protection

Analyzes and secures all incoming prompts against AI-related risks.

Real-time bidirectional 
protection for every 
AI interaction.

<svg width="20" height="20" viewBox="0 0 20 20" fill="none" xmlns="http://www.w3.org/2000/svg">
<path d="M2.5 2V6.36364M2.5 2H6.86364M2.5 2L7.59091 7.09091M2.5 18V13.6364M2.5 18H6.86364M2.5 18L7.59091 12.9091M18.5 2H14.1364M18.5 2V6.36364M18.5 2L13.4091 7.09091M18.5 18H14.1364M18.5 18V13.6364M18.5 18L13.4091 12.9091" stroke="url(#paint0_linear_913_9312)" stroke-linecap="round" stroke-linejoin="round"/>
<defs>
<linearGradient id="paint0_linear_913_9312" x1="-3.34113" y1="31.484" x2="24.8555" y2="21.9451" gradientUnits="userSpaceOnUse">
<stop stop-color="white"/>
<stop offset="0.378899" stop-color="#0057E7"/>
<stop offset="0.486269" stop-color="#3095D9"/>
<stop offset="0.606414" stop-color="#EEC089"/>
<stop offset="0.720211" stop-color="#D74623"/>
<stop offset="1" stop-color="#9D0136"/>
</linearGradient>
</defs>
</svg>

Output Protection

Monitors model responses for data leaks, compliance breaches, and unsafe content.

NYUWAY SECURITY CONSOLE

Input Protection

Alerting

Policy Enforcement

Reporting

1ST PARTY AND 3RD PARTY LLM PROVIDERS
ChatGPT logoClaude LogoAWS logoAzure LogoGemini LogoChat Logo
NYUWAY SECURITY CONSOLE

Input Protection

Alerting

Policy Enforcement

Reporting

// FEATURES

Everything You Need to Secure Your AI Deployment

// 01

Seamless integration options

Integrate protection into your AI applications without rebuilding your architecture.

SDK Integration Embed directly into application backend (Python, Node.js, Java, Go, C#)

Middleware Proxy Drop-in service between app and LLM

API Gateway Route LLM traffic through secure endpoint

Lambda/Serverless Function-level protection for serverless architectures

Framework Support Compatible with LangChain, LlamaIndex, Haystack, and custom implementations

A bunch of different types of logos on a black background.
// 02

Flexible deployment options

Deploy in the environment that meets your security and compliance requirements.

Cloud Deployment Fully managed service in AWS, 
Azure, or GCP

VPC/Private Cloud Deploy within your virtual 
private cloud

On-Premise Complete control in your data center

Air-Gapped Environments Isolated deployment without internet access

A close up of a keyboard with different types of buttons.
// 03

AI-Native threat and data leakage 
detectors built-in

Detect sensitive data and attacks in prompts and responses using AI-native pattern recognition.

PII/PHI detection: SSNs, driver's licenses, passport numbers, addresses, phone numbers, medical records

Financial data: Credit cards, bank accounts, EIN/TIN, routing numbers, financial statements

Secrets & credentials: 100+ sensitive key patterns, including API keys, tokens, passwords, database credentials, cloud keys

Prompt injection & jailbreaks: Instruction overrides, system prompt extraction, delimiter attacks, encoding bypasses

Banned topic detection: Company IP & trade secrets, research & development data, platform-specific data, biometric & genetic data, manipulative content & misinformation

A black background with a red and blue sign.

Dual-Layer Protection for Inputs and Outputs

Configure actions based on threat level and application requirements.

<svg width="44" height="44" viewBox="0 0 44 44" fill="none" xmlns="http://www.w3.org/2000/svg">
<path d="M14.7273 14.7273V3.81818M14.7273 14.7273H3.81818M14.7273 14.7273L2 2M14.7273 29.2727V40.1818M14.7273 29.2727H3.81818M14.7273 29.2727L2 42M29.2727 14.7273H40.1818M29.2727 14.7273V3.81818M29.2727 14.7273L42 2M29.2727 29.2727H40.1818M29.2727 29.2727V40.1818M29.2727 29.2727L42 42" stroke="url(#paint0_linear_797_1433)" stroke-width="2" stroke-linecap="round" stroke-linejoin="round"/>
<defs>
<linearGradient id="paint0_linear_797_1433" x1="-12.6028" y1="75.71" x2="57.8887" y2="51.8628" gradientUnits="userSpaceOnUse">
<stop stop-color="white"/>
<stop offset="0.378899" stop-color="#0057E7"/>
<stop offset="0.486269" stop-color="#3095D9"/>
<stop offset="0.606414" stop-color="#EEC089"/>
<stop offset="0.720211" stop-color="#D74623"/>
<stop offset="1" stop-color="#9D0136"/>
</linearGradient>
</defs>
</svg>

Input Protection:

Redact: Replace sensitive data with placeholders before sending to LLM

Block: Prevent high-risk prompts from reaching the model

Alert: Notify security teams of suspicious prompts

Log only: Monitor inputs without disrupting flow

<svg width="44" height="44" viewBox="0 0 44 44" fill="none" xmlns="http://www.w3.org/2000/svg">
<path d="M2 2V12.9091M2 2H12.9091M2 2L14.7273 14.7273M2 42V31.0909M2 42H12.9091M2 42L14.7273 29.2727M42 2H31.0909M42 2V12.9091M42 2L29.2727 14.7273M42 42H31.0909M42 42V31.0909M42 42L29.2727 29.2727" stroke="url(#paint0_linear_797_1430)" stroke-width="2" stroke-linecap="round" stroke-linejoin="round"/>
<defs>
<linearGradient id="paint0_linear_797_1430" x1="-12.6028" y1="75.71" x2="57.8887" y2="51.8628" gradientUnits="userSpaceOnUse">
<stop stop-color="white"/>
<stop offset="0.378899" stop-color="#0057E7"/>
<stop offset="0.486269" stop-color="#3095D9"/>
<stop offset="0.606414" stop-color="#EEC089"/>
<stop offset="0.720211" stop-color="#D74623"/>
<stop offset="1" stop-color="#9D0136"/>
</linearGradient>
</defs>
</svg>

Output Protection:

Filter: Remove sensitive data from LLM responses

Sanitize: Clean toxic or non-compliant content

Validate: Ensure responses meet policy requirements

Audit: Track all outputs for compliance

Policy enforcement aligned with compliance frameworks

Pre-built compliance templates
SOC 2, HIPAA, GDPR, PCI DSS, DPDPA

Application-specific rules
Different policies per AI application

Severity levels and risk scoring
Prioritize threats by impact

Custom policy configuration
Define rules for your use case

A computer screen with a padlock on it.

What Makes Homegrown App Guard Different

A set of three different logos on a wall.

No application disruption

Your AI applications continue operating normally. Protection happens invisibly in <300ms—faster than users can notice.

A set of three different logos on a dark background.

Works with any LLM

OpenAI, Claude, Gemini, Azure Bedrock, and local models. Supports any LLM accessible 
via API.

A computer screen with a purple background.

Privacy-First Architecture

Data processed in memory within your environment—cloud, VPC, or on-premise. Prompts and responses never leave your control. Compatible with air-gapped deployments.

Real World Use cases

Banking and financial services

Secure customer-facing 
financial AI assistants

Input Protection:

Limit queries to banking services and account information

Block attempts to manipulate the bot into unauthorized transactions

Filter fraudulent or phishing-style queries

Detect social engineering attempts targeting customer data

Output Protection:

Ensure responses stay within approved financial topics

Prevent disclosure of internal banking processes or risk models

Block exposure of other customers' information

Validate compliance with financial regulations (PCI DSS, GLBA)

A red background with a black border and a white border.
A man riding a wave on top of a surfboard.
Enterprise knowledge bots

Protect internal AI portals and employee assistants

Input Protection:

Block queries attempting to access confidential repositories

Restrict access based on employee role and clearance level

Detect attempts to extract restricted project information

Filter queries for trade secrets or competitive intelligence

Output Protection:

Prevent LLMs from disclosing trade secrets or R&D data

Block exposure of sensitive project details or timelines

Filter proprietary technical documentation

Ensure responses respect information governance policies

An airplane flying in the sky with a blue background.
A man riding a wave on top of a surfboard.
Customer support platforms

Secure AI-powered customer service chatbots

Input Protection:

Filter user inputs for toxic language and abuse

Block spam and repetitive malicious queries

Detect social engineering attempts to extract information

Prevent prompt injection to access backend systems

Output Protection:

Prevent chatbot from sharing internal process details

Block disclosure of staff credentials 
or contact information

Filter confidential company policies or procedures

Ensure responses stay within approved support topics

A blue sky with a plane flying in the sky.
A man riding a wave on top of a surfboard.

See Nyuway in Action

Your specific AI tools and workflows

Real detection on your type of data

ROI calculation for your organization

Deployment plan for your environment

Schedule Demo
A picture of the earth with a cross in the middle globe
// FAQ’s

Frequently Asked Questions

// 01

What about air-gapped environments?

Yes. Self-hosted deployment is available for environments without internet access. All detection happens within your network perimeter.
// 01

Can we deploy on-premises or in our VPC?

Yes. Nyuway can be deployed in the cloud, in your private VPC, or fully on-premise with the same core functionality. You maintain full control of data and infrastructure at all times.
// 01

How quickly can we deploy?

Most organizations deploy in under 24 hours. SDK integration takes 15-30 minutes. Middleware deployment can be configured in under an hour. You'll see protection on day one.
// 01

Does this work with RAG applications?

Absolutely. We protect both retrieval and generation phases. Scan documents before indexing, filter queries before retrieval, protect prompts to LLMs, and sanitize responses to users.
// 01

Can we customize detection patterns?

Yes. Create custom regex patterns, keyword lists, and context-specific rules. Adjust sensitivity levels and set different policies per application, user role, or data type.
// 01

What LLMs and frameworks do you support?

We support OpenAI, Anthropic Claude, Google Gemini, Azure OpenAI, AWS Bedrock, Cohere, and any LLM accessible via API—including self-hosted models. Compatible with LangChain, LlamaIndex, Haystack, and custom implementations.
// 01

Will this slow down our AI application?

No. Detection happens in <300ms—faster than users can perceive. Protection is instant and preserves application performance.